Personale docente

Massimo Guarnieri

Professore ordinario


Indirizzo: VIA G. GRADENIGO, 6/A - PADOVA . . .

Telefono: 0498277524


  • Il Mercoledi' dalle 12:00 alle 13:00
  • Il Giovedi' dalle 12:00 alle 13:00
  • presso Dipartimento di Ingegneria Industriale
    senza restrizioni di orario, previo accordo via email, per evitare interferenze con altri impegni

Degree in Electrical Engineering, mark 110/110 cum laude, at Padua University, 1979.
Master in Business Administration at CUOA, 1986.
PhD in Electrical Sciences in Rome, 1987.

Professor of Electrical Engineering since October 2003 and of History of Technology since 2007 at Padua University.

He has worked to the Eta Beta II and RFX projects on controlled thermonuclear fusion in magnetic confinement, developed in Padua in collaboration with English, Irish, Swedish, US, and Japanese research centers. He was engaged in studying and designing the magnetic configurations of these devices, for which he conceived ad-hoc numerical tools, able to simulate the operation and performance of the magnetic systems. He was also committed at managing the contracts for the manufacture of the devices’ inductors. He also worked on the design and manufacturing of their power supplies, and of their measurement, monitoring and protection systems, conceiving and defining original solutions and technologies. He studied the magnetic configurations, which provide the plasma equilibrium and stability, in order to identify good plasma performance and confinement.
He has largely studied computational methods for electromagnetic coupled and myltiphysic problems, which are used in both the industrial and biomedical fields. A part of this research regards the development of formulations involving also fluid dynamics, which must be considered in a number a energy-related electromagnetic problems. He has studied numerical models for electrical systems based on fuel cells, developing procedure for simulating their multi-physical performance, which can be applied to the definition of optimized industrial solutions.
He directed a number of sub-programs within several National Interest Research Programs (PRINs) in the years 1999, 2002, 2004, 2006, 2008 (in this case as the deputy-coordinator).
He has also been responsible for some projects funded by the University of Padua and Regione Veneto. He has led a research program of the Strategic Project 2011, the most funded and competitive research program issued by the University of Padua (€810,000).
He has been a visiting researcher at the laboratories at UKAEA Culham (UK) and General Dynamics in San Diego (USA).
He co-chaired the XII International Symposium on Polymer Electrolytes in 2010, and chaired some international workshops and invited sessions within the international conferences Coupled Problems 2009, 2011, and 2013, and the 11th Biennial Conference on Engineering System Design and Simulation.
He was appointment to teach in the Italian National Doctorate School in Electrical Engineering "F. Gasparini" in 2008.

He authored over 240 scientific publications, mostly papers in peer-reviewed international journals and conference proceedings, including over thirty books on electromagnetism, electrical networks, electrical technologies and history of technology, some being adopted in other Italian universities.

He is a columnist and a member of the editorial board of the IEEE Industrial Electronics Magazine. He is the official representative of the University of Padua in N.ERGHY, the association that represents the European universities and research institutions within the UE Joint Undertaking on Fuel Cell and Hydrogen (FCH-JU), that will coordinated the European researches in this field in the period 2014–2020 providing funds for €1,300 M.

Download Curriculum_Guarnieri.pdf

Selezione pubblicazioni 2017-2019 (al settebre 2019)

M. Guarnieri: “Trailblazers in Electromechanical Computing”, IEEE Industrial Electronics Magazine, Vol. 11, No. 2, 2017, pp. 58-62.

M. Guarnieri: “Negative feedback, amplifiers, governors, and much more”, IEEE Industrial Electronics Magazine, Vol. 11, No. 3, 2017. pp. 50-52.

G. Chitarin, F. Gnesotto, M. Guarnieri, A. Maschio, A. Stella, Elettrotecnica – 1 Principi, Società editrice Esculapio, Settembre 2017, pp. 294.

M. Guarnieri: “Seventy Years of Getting Transistorized”, IEEE Industrial Electronics Magazine, Vol. 11, No. 4, 2017, pp. 33-37.

M. Guarnieri, M. Morandin, P. Campostrini, A. Ferrari, S. Bolognani, “Electrifying Water Buses: A Case Study on Diesel-to-Electric Conversion in Venice”, IEEE Industry Applications Magazine, Vol. 24, no. 1, 2018, pp. 71-83.

C. Sun, A. Zlotorowicz, G. Nawn, E. Negro, F. Bertasi, G. Pagot, K. Vezzù, G. Pace, M. Guarnieri, V. Di Noto, “[Nafion/(WO⁠3)⁠x] hybrid membranes for vanadium redox flow batteries,” Solid State Ionics, vol. 319, 2018, pp. 110-116.

M. Guarnieri: “Solidifying power electronics”, IEEE Industrial Electronics Magazine, Vol. 12, No. 1, 2018, pp. 36-40.

D. Maggiolo, F. Zanini, F. Picano, A. Trovò, S. Carmignato, M. Guarnieri, “Particle based method and X-ray computed tomography for pore-scale flow characterization in VRFB electrodes” Energy Storage Materials, vol. 16, 2019, pp.91-96.

M. Guarnieri, “An historical survey on light technologies”, IEEE Access, Vol. 6, 8/05/2018, pp. 25881-25897.

M. Guarnieri: “Matthew Fontaine Maury The 19th-Century Forerunner of Big Data”, IEEE Industrial Electronics Magazine, Vol. 12, No. 2, 2018, pp. 64-67.

M. Guarnieri, A. Trovò A. D’Anzi, P. Alotto, “Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: design review and early experiments”, Applied Energy, 230 (2018) 1425-1434.

M. Guarnieri: “Revolving and Evolving – Early dc Machines”, IEEE Industrial Electronics Magazine, Vol. 12, No. 3, 2018, pp. 38-43.

M. Guarnieri, Angelo Bovo, Antonio Giovannelli, Paolo Mattavelli, “The VERITAS multi-technology microgrid experiment: a design review,” IEEE Industrial Electronics Magazine, Vol. 12, No. 3, 2018, pp. 19-31.

G. Chitarin, F. Gnesotto, M. Guarnieri, A. Maschio, A. Stella, Elettrotecnica – 2 Applicazioni, Società editrice Esculapio, 2018, pp. 238.

M. Guarnieri: “The Development of ac Rotary Machines”, IEEE Industrial Electronics Magazine, Vol. 12, No. 4, 2018, pp. 28-32.

A. Trovò, G. Marini, A. Sutto, P. Alotto, M. Giomo, F. Moro, M. Guarnieri, “Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects”, Applied Energy, 240, 2019, 893-906.

A. Trovò, A. Saccardo, M. Giomo, F. Moro, M. Guarnieri, “Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations”, Journal of Power Sources, 424 (2019): 204-214.

M. Guarnieri, A. Trovò, G. Marini, A. Sutto, P. Alotto, “High current polarization tests on a 9 kW Vanadium Redox Flow Battery stack”, Journal of Power Sources, 431 (2019): 239-249.

M. Guarnieri: “Messaging before the Internet – Early electrical telegraphs”, IEEE Industrial Electronics Magazine, Vol. 13, No. 1, pp. 38-41+53, Mar. 2019.

M. Guarnieri: “21 July 1969”, IEEE Industrial Electronics Magazine, Vol. 13, No. 2, pp. 56-61, June 2019.

M. Guarnieri: “Reconsidering Leonardo”, IEEE Industrial Electronics Magazine, Vol. 13, No. 3, pp. 35-38, Sept. 2019.

Download Pubblicazioni_Guarnieri.pdf

1) Attività sperimentali nell'Electrochemical Energy Storage and Conversion Laboratory, creato da M. Guarnieri. Consistono nello sviluppo tecnologico svolto prevalentemente sulla batteria a flusso redox a vanadio da 9 kW, 27 kWh, una test facility unica di questa taglia in Italia e con pochissimi analoghi in Europa. Le ricerche mirano a mettere a punto tecnologie per l'accumulo energetico su grande scala, competitive a livello internazionale.
2) Formulazioni numeriche e modelli per problemi accoppiati e problemi multifisici nel Laboratorio di Elettrotecnica Computazionale, creato da M. Guarnieri. Le formulazioni, che coinvolgono aspetti elettrici, elettrochimici, fluidodinamici e meccanici, sono utilizzate in modelli di simulazione di sistemi di generazione elettrica e di accumulo energetico innovativi, quali le celle a combustibile e le batterie a flusso redox. I modelli vengono usati nella definizione ed ottimizzazione di configurazioni che possono essere realizzabili in laboratorio per fini di ricerca e che possono essere industrializzati.
3) Sviluppo e progettazione di veicoli acquatici elettrici per impeghi nella laguna di Venezia, in collaborazioni cono aziende veneziane.
4) Sviluppo, progettazione e gestione di microgrid dotate di unità innovative di generazione da fonti rinnovabili e di accumulo energetico, in collaborazioni cono aziende del territorio.

Argomenti di Tesi (Triennali, magistrali, dottorato):


Nell'Electrochemical Energy Storage and Conversion Laboratory vengono studiate e sviluppate le Batterie a Flusso e le Celle a Combustibile. In particolare vengono sviluppate soluzioni e configurazioni innovative e vengono eseguiti test e collaudi di vario tipo.

Nel Laboratori di Elettrotecnica Computazionale vengono sviluppati i modelli numerici per problemi accoppiati dedicati all'accumulo energetico di tipo elettrochimico (per impieghi stazionari e mobili).


ELETTROTECNICA per la Laurea in Ingegneria dell'Energia
Informazioni e materiale didattico di trovano nella pagina Moodle "Elettrotecnica matr. pari 18/19"

STORIA DELLA TECNOLOGIA per le Lauree Magistrali dell'area dell'Ingegneria Industriale
Informazioni e materiale didattico di trovano nella pagina Moodle "Storia della Tecnologia 18/19"


ELECTRICAL ENGINEERING for the Undergraduate Degree Program in Information Engineering
Information and studying materials are available in Moodle: "Electrical Engineering even codes 18/19"

HISTORY OF TECHNOLOGY for Graduate Degree Programs of Industrial Engineering
Information and studying materials are available in Moodle: "History of Technology 18/19"